Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Base de dados
Tópicos
Ano de publicação
Tipo de documento
Intervalo de ano
1.
Biomed Pharmacother ; 158: 114208, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: covidwho-2233274

RESUMO

The COVID-19 pandemic has affected millions of people and posed an unprecedented burden on healthcare systems and economies worldwide since the outbreak of the COVID-19. A considerable number of nations have investigated COVID-19 and proposed a series of prevention and treatment strategies thus far. The pandemic prevention strategies implemented in China have suggested that the spread of COVID-19 can be effectively reduced by restricting large-scale gathering, developing community-scale nucleic acid testing, and conducting epidemiological investigations, whereas sporadic cases have always been identified in numerous places. Currently, there is still no decisive therapy for COVID-19 or related complications. The development of COVID-19 vaccines has raised the hope for mitigating this pandemic based on the intercross immunity induced by COVID-19. Thus far, several types of COVID-19 vaccines have been developed and released to into financial markets. From the perspective of vaccine use in globe, COVID-19 vaccines are beneficial to mitigate the pandemic, whereas the relative adverse events have been reported progressively. This is a review about the development, challenges and prospects of COVID-19 vaccines, and it can provide more insights into all aspects of the vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , China/epidemiologia , Surtos de Doenças
2.
ACS Nano ; 15(11): 18142-18152, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1483086

RESUMO

Emerging viruses will continue to be a threat to human health and wellbeing into the foreseeable future. The COVID-19 pandemic revealed the necessity for rapid viral sensing and inhibitor screening in mitigating viral spread and impact. Here, we present a platform that uses a label-free electronic readout as well as a dual capability of optical (fluorescence) readout to sense the ability of a virus to bind and fuse with a host cell membrane, thereby sensing viral entry. This approach introduces a hitherto unseen level of specificity by distinguishing fusion-competent viruses from fusion-incompetent viruses. The ability to discern between competent and incompetent viruses means that this device could also be used for applications beyond detection, such as screening antiviral compounds for their ability to block virus entry mechanisms. Using optical means, we first demonstrate the ability to recapitulate the entry processes of influenza virus using a biomembrane containing the viral receptor that has been functionalized on a transparent organic bioelectronic device. Next, we detect virus membrane fusion, using the same, label-free devices. Using both reconstituted and native cell membranes as materials to functionalize organic bioelectronic devices, configured as electrodes and transistors, we measure changes in membrane properties when virus fusion is triggered by a pH drop, inducing hemagglutinin to undergo a conformational change that leads to membrane fusion.


Assuntos
COVID-19 , Nanopartículas , Vírus , Humanos , Pandemias , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA